Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


LAMpAS Project Unveils Laser Designed to Speed Surface Patterning

Collaborators on the EU-funded LAMpAS project have developed what they report to be the first laser system based on interference patterning combined with a polygon scanner system for high-throughput, low-cost surface production with controlled topographic characteristics. The newly developed system can produce well-defined surface patterns with controlled length scales and feature sizes to provide surfaces with advanced functions.

Central to the system’s operation is a 1.5-kW laser system developed by TRUMPF that demonstrates 1- to 3-ps pulse durations and a reduced spectral bandwidth required for direct laser interference patterning. The source can provide pulse energies up to 4 mJ.

The collaborative laser system’s design and construction took an iterative approach, with collaborating partners reporting their completion of critical project steps over the span of the last 18 months. The system’s optical head combines a custom polygon scanner, designed by SCANLAB, with a direct laser interference patterning unit made by TU Dresden. The module facilitates the fabrication of periodic textures at high throughput, producing hierarchical patterns for surface functionalization.

The system has two real-time monitoring systems that are based from one side on a near-infrared camera. The systems can monitor the structuring process in real time and can detect heat accumulation or indirectly predict in real time the depth of produced topographies with resolution of about 15 nm.

The LAMpAS laser system is designed to provide unique surface patterning capabilities to provide decorative, easy-to-clean, and anti-fingerprint properties for home appliances. Courtesy of EPIC.
The machine will significantly increase the potential of laser structuring to design functionalized surfaces by enhancing the efficiency, flexibility, and productivity of the process. With those attributes, it will be possible to reach different characteristics of the surfaces, such as decorative finishes, easy-to-clean properties, anti-fingerprint properties, or anti-calc properties, without using paint or other more expensive technology.

LAMpAS was set up in 2019 with a grant of €5.1 million ($5.4 million) under the EU’s Horizon 2020 program. The aim of the project was to develop new concepts for laser structuring and to bring the technology to industrial levels at affordable costs. It’s aimed at the design of newly functionalized structures by enhancing the efficiency, flexibility, and productivity of processes based on the development of a high-power, ultrashort-pulse laser system together with advanced optical concepts for high-throughput materials processing.

Inspired by nature, LAMpAS technology aimed to produce well-defined periodic surface patterns with feature sizes smaller than 1 µm.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media