When a tissue sample is illuminated with a laser beam, the acquired images generally contain random intensity fluctuations, the so-called laser speckles. The confocal laser speckle imaging setup is implemented on top of a line-scan confocal microscope, which forms an illumination line on the sample. A line camera is positioned to selectively capture the speckle signals coming from the illuminated line and effectively reject the out-of-focus light, which is a serious problem leading to reduced contrast and resolution in conventional laser speckle imaging techniques.
By quickly scanning the illumination line across the sample surface, two-dimensional raw speckle images can be acquired at more than 200 fps. Time series analysis of the speckle images is performed pixel by pixel — a strategy that preserves the spatial resolution in the processed images.
Autocorrelation and speckle contrast calculation are both commonly used modes of analysis that link the speckle-derived parameters to the local blood flow velocity.
However, the combination of confocal microscopy with auto correlation-based speckle analysis, called line scan laser speckle autocorrelation imaging (LSAI), bears significant advantages. Small-animal imaging experiments enabled the researchers to demonstrate that LSAI is able to quantify the local flow velocity at individual pixels, which are significantly smaller than the typical diameter of capillaries. Moreover, LSAI is fast enough to capture video-rate flow velocity changes at the same microscopic level.
An immediate and important application of confocal laser speckling imaging is to map and quantify dynamic blood flow in microvessels, which are the smallest blood vessels within organ tissues, including terminal arterioles, metarterioles, capillaries, and venules. Analyzing the circulation of blood in the microvasculature, or microcirculation, is fundamental in the analysis and understanding of the pathophysiology and pathogenesis of a wide range of human diseases.
Experimental tools with adequately high temporal resolution and spatial resolution are highly desirable for in vivo visualization and, more importantly, quantitative measurement of the time-dependent blood flow maps in the microvasculature for further clinical and preclinical investigations.
The researchers believe that the device could become a standard imaging tool in microcirculation research, as well as for clinical diagnosis.
The research was published in Opto-Electronic Advances (www.doi.org/10.29026/oea.2022.210045).