The same design principle for complexes is already used in types of solar cells. Until now, though, it has mostly featured noble metal compounds, the Basel team said.
Use of manganese has another advantage: It prevents the vibration of complexes. The absorption of light energy normally causes greater distortion in complexes made of cheap metals than it does in noble metal compounds. As a result, the complexes start to vibrate, and a large part of the absorbed light energy is lost.
The researchers incorporated tailor-made molecular components into the complexes to force the manganese into a rigid environment. This suppressed unwanted vibrations and distortions, and the design principle also increased the stability of the resulting compounds and their resistance to the decomposition process.
“Until now, no one has succeeded in creating molecular complexes with manganese that can glow in solution at room temperature and that have these special reaction properties,” Wenger said. The advancement opens possibilities in the field of noble metals, he said.
The team wants to improve the luminescent properties of the new manganese complexes and anchor them on suitable semiconductor materials for use in solar cells. Other possible refinements of the material include water-soluble variants that could be used in place of ruthenium or iridium compounds in the photodynamic therapy used to treat cancer.
The research was published in Nature Chemistry (www.doi.org/10.1038/s41557-021-00744-9).