“We set out to make trapping and manipulating nanodiamonds simpler by using interdisciplinary approach,” Ndukaife said. “Our tweezer, a low-frequency electrothermoplasmonic tweezer (LFET), combines a fraction of a laser beam with a low-frequency alternating current electric field. This is an entirely new mechanism to trap and move nanodiamonds.”
With this method, a nanodiamond can be moved in a matter of seconds. LFET is the first scalable transport and on-demand assembly technology of its kind, the researchers noted in their paper.
“Controlling nanodiamonds to make efficient single-photon sources that can be used for these kinds of technologies will shape the future,” Ndukaife said. “To enhance quantum properties, it is essential to couple quantum emitters such as nanodiamonds with nitrogen-vacancy centers to nanophotonic structures.”
Ndukaife plans to explore nanodiamonds further, arranging them onto nanophotonic structures designed to enhance their emission performance. With the increased control over the components afforded by this work, Ndukaife’s lab seeks to explore the possibilities for ultrabright single-photon sources and entanglement in an on-chip platform for information and imaging.
“There are so many things we can use this research to build upon,” Ndukaife said. “This is the first technique that allows us to dynamically manipulate single nanoscale objects in two dimensions using a low-power laser beam.”
The research was published in Nano Letters (www.doi.org/10.1021/acs.nanolett.1c00357).