Yuebing Zheng, corresponding author of the research paper and an associate professor in the Walker Department of Mechanical Engineering, said, “Our tool addresses this critical challenge: Instead of heating the trapped objects, we have them controlled at a lower temperature.”
The research team calls its technology opto-refrigerative tweezers (ORTs). The technology works by manipulating objects at a laser-generated cold spot. This is enabled by optical refrigeration and thermophoresis. The localized laser cooling of the substrate generates a nonuniform temperature gradient field in which colloidal particles and molecules can be trapped at the low temperature region.
Since it is based on a temperature gradient field, ORT allows the long-range trapping with a low-intensity and weakly focused laser beam, which can reduce the photon degradation of target objects.
In addition, the general thermophobic nature enables the trapping of various colloids and biomolecules in liquid media by ORT. The researchers realized localized laser cooling in liquid media with Yb:YLF crystals and a 1020-nm laser.
Future research may focus on improving the surface uniformity of the substrate, or fine-tuning of the tweezers’ trapping potential.
The team expects that the tool will prove useful in a variety of fields, including materials science, physical chemistry, and biological science.
The research was published in Science Advances (www.doi.org/10.1126/sciadv.abh1101).