“The new methods we are developing represent a paradigm shift in the capabilities of laser-based manufacturing, making it possible to move between 3D beam shapes with zero down-time and minimal technical know-how,” said Richard Carter, assistant professor of applied optics and photonics at Heriot-Watt University, and the project's lead.
"This technology could also support research in quantum technology, waveguide physics, and the biosciences — anywhere where light must be controlled and manipulated,” he said.
Researchers will collaborate with three industrial partners throughout the project to optimize the approach and the final product for commercial application. Industrial partners PowerPhotonic, Oxford Lasers, and the G&H Group will also support testing in real-life industrial settings. The project’s research involves the investigation of more precise instruments that could allow the resection of tumors without removing healthy surrounding tissue, for example. This type of medical application will be supported by professor David Jayne at the University of Leeds.
Current laser beams cannot be shaped to suit the product that they are being used to manufacture. The new beams will be more precise, efficient, and cost-effective. Lasers are already widely used to make precise incisions and to mold materials into specific shapes. The new approach to laser-based manufacturing depends on melting or vaporizing the material, which means the laser's energy must be focused on the right points. The standard beam shape makes it difficult to tailor for specific manufacturing processes.
Other applications include microscopy, astronomic telescopes, and the fabrication of waveguide devices to support telecommunications and the internet.