“The system we trialed is simple, robust, and affordable, making it promising technology to support precision agriculture,” said Ali Al-Naji, a professor at the University of South Australia. “It is based on a standard video camera that analyzes the differences in soil color to determine moisture content. We tested it at different distances, times, and illumination levels and the system was very accurate.”
The team connected the camera to an artificial neural network (ANN). The system was trained to recognize different soil moisture levels independent of any sky condition. The ANN allows the system to recognize the specific soil conditions of any location; it can be customized for each user and updated for changing climatic circumstances to ensure accuracy.
“Once the network has been trained it should be possible to achieve controlled irrigation by maintaining the appearance of the soil at the desired state,” said Javaan Chahl, a professor at the University of South Australia. “Now that we know the monitoring method is accurate, we are planning to design a cost-effective smart-irrigation system based on our algorithm using a microcontroller, USB camera, and water pump that can work with different types of soil.”
The system, Chahl added, has potential as a cost-effective, accurate, and, in terms of its components, readily available tool for improved irrigation technology under changing climate conditions.
The research was published in Heliyon (www.doi.org/10.1016/j.heliyon.2021.e06078).