Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Silicon Modulator Integrates Photonics and Electronics to Perform at 100 Gbit/s

Researchers from the University of Southampton’s Optoelectronics Research Centre have demonstrated an all-silicon optical modulator at 100 Gbit/s and beyond, without the use of digital signal processing. The transmitter nearly doubles the maximum power rate of current state-of-the-art devices. Low-power, low-cost transmitters, such as the Southampton research team’s design, are necessary for overcoming fabrication processes with new materials and those that are not CMOS-compatible.

In addition to in modern communication systems and communication technologies, optical modulation can be used in microwave photonics and chip-scale computing. The new modulator device, according to  Ke Li, lead author of the paper describing the work and lead inventor of the technology, is a single, integrated system considering both photonics and electronics.


Scientists introduce a new design philosophy where photonics and electronics must be considered as a single integrated system to tackle the demanding technical challenges of this field. Courtesy of the University of Southampton.
“Our results are based upon a fully integrated electronic-photonic system, not a laboratory stand-alone silicon modulator,” said Graham Reed of the Zepler Institute for Photonics and Nanoelectronics. “In all other work to date that does not rely on digital signal processing to recover signal integrity, integration of the electronics and photonics has resulted in an inferior system performance as compared to the performance of the individual components, resulting in a maximum data rate of approximately 56 Gbit/s.”

The new device was fabricated through Southampton’s CORNERSTONE research fabrication foundry service. Device fabrication and components integration was performed at the University of Southampton’s Mountbatten Cleanroom complex.

The research was published in Optica (www.doi.org/10.1364/OPTICA.411122).

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media