Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Light-Based Chemistry Could Increase Energy Density of a Renewable Fuel

Researchers at Los Alamos National Laboratory used photochemical [2 + 2] cycloaddition to upgrade biomass-derived acetone — common nail polish remover — to higher-mass hydrocarbons, and produced a product that can be blended with conventional jet fuel for more energy-efficient flying.


Starting with acetone derived from plants, scientists at Los Alamos are converting this simple molecule into jet fuel using a novel process that uses light. This has the potential to be blended with regular jet fuel to offer a greener option. Courtesy of Los Alamos National Laboratory.

“We converted bio-derived acetone to isophorone and then used a UV lamp to convert it to a cyclobutane, a type of hydrocarbon with high-energy density for fuels applications,” researcher Courtney Ford Ryan said. “This process allows us to transform a natural product into a fuel additive, improving the performance of petroleum-based jet fuel.”

Acetone’s volatility precludes its direct use as a fuel. Also, acetone requires chemical upgrading to be suitable for introduction into the fuel supply, as it is capable of dissolving engine parts and O-rings. By upgrading the initial product to a cyclobutane, the researchers were able to generate a potentially safer and more energy-dense fuel, while reducing the hydrogen input required for upgrading a bio-derived feedstock.

The research was published in Sustainable Energy & Fuels (www.doi.org/10.1039/C9SE01014A). 

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media