Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Squeezed Light Reduces Noise, Could Speed Quantum Sensing

Oak Ridge National Laboratory (ORNL) physicists studying quantum sensing, which could affect a range of potential applications from airport security scanning to gravitational wave measurements, said that certain quantum sensors can use a squeezed state of light to reduce statistical noise that occurs in ordinary light. “Quantum-enhanced microscopes are particularly exciting,” research scientist Benjamin Lawrie said. “These quantum sensors can ‘squeeze’ the uncertainty in optical measurements, reducing the uncertainty in one variable while increasing the uncertainty elsewhere.” 


Certain quantum sensors can use a squeezed state of light to greatly reduce statistical noise that occurs in ordinary light. Courtesy of B.J. Lawrie et al., “Quantum Sensing with Squeezed Light,”
ACS Photonics.

Squeezed light is a quantum state where the statistical noise that occurs in ordinary light is greatly reduced. Squeezed atomic force microscopes could operate hundreds of times faster than current microscopes while providing a nanoscale description of high-speed electronic interactions in materials, the ORNL researchers said. This advance could be made possible by removing a requirement in most atomic force microscopes that the microscope operate at a single frequency. Future sensing technologies that harness quantum properties could be deployed as new quantum-enabled devices or as “plug-ins” for existing sensors.

The research was published in ACS Photonics (https://doi.org/10.1021/acsphotonics.9b00250).  

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media