The brain-inspired infrastructure will use ultrafast, extremely energy-efficient Josephson junctions, which consist of two superconducting materials and a thin nonsuperconducting material in between.
The Josephson junctions will be combined with silicon-based infrared photon emitters, which generate light pulses that allow a given neuron to communicate with many downstream neurons. This arrangement mimics how the human brain works by sending and receiving ultrashort electrical pulses that it uses to simultaneously store and process information.
Research will be conducted in SUNY Poly’s 300-mm wafer fabrication facility using the same tool platforms on which advanced computer chips are built. This research, the scientists said, can accelerate the development of large-scale, fab-friendly superconducting optoelectronic systems that could compute 30,000× faster than the human brain, but at the same level of energy efficiency.