Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Virginia Tech Professor Awarded CAREER Grant to Study Topological Materials

Ed Barnes, of the Virginia Polytechnic Institute and State University (Virginia Tech) Department of Physics, will use a National Science Foundation (NSF) CAREER grant to create mathematical models that will help scientists better understand materials that possess exotic properties. The $494,000, five-year grant will allow Barnes, an assistant professor, to build a new mathematical framework to predict how currents induced by light or magnetic fields will flow in topological materials. New topological materials that can easily absorb light and carry currents could be used to improve electronics, from cellphones to computers, and conserve energy. 


Ed Barnes of the Virginia Tech Department of Physics. Courtesy of Virginia Tech.

“Making these technologies a reality requires a deep understanding of their rich physics,” said Barnes in his NSF proposal. “The goal of this project is to develop new theoretical techniques that can be used to make accurate predictions about the behavior of currents in these materials in the presence of applied electric fields, magnetic fields, or lasers. These predictions could then be used to guide further progress toward new experiments, technological applications, and advances in our fundamental understanding of topological materials, and materials more generally.”

One class of materials that Barnes will study, transition metal dichalcogenides, is proficient at absorbing light and converting it into electrical currents, making it a potential candidate for use in solar panels and other photoelectric technologies. He will also study topological insulators and Weyl semimetals. Because of the topology of these materials, electrical currents can flow with little resistance across the surface of the material. Barnes will seek to understand how magnetic fields can be used to control the flow of currents in these materials and how impurities in the materials could disrupt the benefits of the topology.

“Understanding how this process works in detail is challenging with existing mathematical techniques, which is my motivation to seek new approaches to study these compounds, which have such great potential for energy conversion,” Barnes said.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media