Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Application Note: Raman Microscope Probes Semiconductor Defects

Using Raman microscopy to study flaws in the crystal structure of semiconductors could lead to better epitaxial growth processes that would make the materials more energy efficient when used in electronic devices.

Using a Raman microscope from Renishaw PLC, professor Noboru Ohtani of Kwansei Gakuin University has identified a potential cause of one kind of defect in 4H-SiC, a form of silicon carbide: During physical vapor transport, nitrogen enrichment near the crystal-seed interface is associated with compressive stress parallel to the interface.


Professor Noboru Ohtani of Kwansei Gakuin University with an inVia Raman microscope. Courtesy of Renishaw.

Additionally, temperature gradients, which are a primary driving force for crystal growth, can lead to plastic deformation of the crystals during the growth and cooling processes. This deformation results in residual stresses when the crystals are cooled to room temperature.

Ohtani and colleagues measured the spatial variation of stresses in the crystals using Renishaw's inVia confocal Raman microscope. The group also uses high resolution x-ray diffraction to characterize stress distribution. Raman microscopy provides complementary information to the x-ray data but with much higher spatial resolution.

"The key benefit is the ultrahigh-speed data acquisition system, which results in a higher sensitivity to measuring stresses in the materials compared to other Raman systems," Ohtani said.

One goal of Ohtani's group is to develop crystal growth processes that can produce large, ultrahigh-quality silicon carbide epitaxial wafers. The researchers recently published findings in Materials Science Forum (doi: 10.4028/www.scientific.net/MSF.821-823.90).

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media