Laser-Chilled Atoms Sit for Ultrafast Portrait
Physicists from the
University of Michigan recently fired 70-fs pulses from a Ti:sapphire laser to control the random movements of atoms in a potassium-tantalite crystal. The laser was split in two beams, with one arriving at the crystal target a few picoseconds after the first. The first pulse created pairs of phonons -- "squeezed" particles of vibrational energy -- that scattered the second, weaker pulse as it passed through the crystal. By measuring the energy that continued through the crystal, physicists could visualize the crystal's atomic structure.
LATEST NEWS
- Fraunhofer CAP Appoints Head, Scientific Director: People in the News: 1/15/25
Jan 15, 2025
- Bioluminescent Tags Track RNA Dynamics in Live Cells in Real Time
Jan 15, 2025
- Sensing and Inspection Specialist EVK Joins Headwall Group
Jan 14, 2025
- PHOTON IP Raises $4.9M Seed Round
Jan 14, 2025
- Graphene Prevents Damage to Flexible Thin Films for Wearable Electronics
Jan 14, 2025
- Thorlabs Acquires VCSEL Developer, Longtime Partner Praevium Research
Jan 13, 2025
- Photoactivated Gel Achieves Bone Regeneration and Adhesion at Same Time
Jan 13, 2025
- Electrically-Pumped GaAs-Based Nano-Ridge Lasers Fabricated at Wafer Scale
Jan 13, 2025