Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Semiconductor Manipulates IR Light

A nanostructure-embedded semiconductor that manipulates light in the IR/terahertz range could benefit applications from imaging to energy efficiency, telecommunications and more.


An artist's rendering of nanoscale metallic wires and metallic particles embedded in semiconductors. Courtesy of Peter Allen, UCSB.


Developed by a team from the University of California, Santa Barbara, the technology uses erbium, a rare-earth metal that has the ability to absorb light in the visible as well as infrared wavelengths.

Pairing it with antimony (Sb), the researchers embedded the resulting compound, erbium antimonide (ErSb), as semimetallic nanostructures within the semiconducting matrix of gallium antimonide (GaSb).

“The nanostructures are coherently embedded without introducing noticeable defects, through the growth process by molecular beam epitaxy,” said Dr. Hong Lu, a researcher in UCSB’s materials and electrical and computer engineering departments, and a lead author of the study. “Secondly, we can control the size, the shape and the orientation of the nanostructures.”

The ErSb/GaSb combination is ideal because of its structural compatibility with surrounding materials, the researchers noted. It allowed them to embed the nanostructures without interrupting the atomic lattice structure of the semiconducting matrix.

Potential functions for the new semiconductor include development of more efficient solar cells, more reliable and higher-resolution biological imaging, medical applications to fight cancer, applications in the new field of plasmonics and the ability to transmit massive amounts of data at higher speeds.

A variety of optics- and electronics-based applications could benefit as well.

The research is published in Nano Letters. (doi: 10.1021/nl402436g

For more information, visit: www.ucsb.edu

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media