Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


5-D ‘Superman’ Memory Crystal Created

Nanostructured glass has been demonstrated as a medium for recording digital text in 5-D using a femtosecond laser. The portable memory technology could store vast quantities of information — 360 TB on a disc — for more than a million years.

The technology, developed at the University of Southampton and Eindhoven University of Technology, was dubbed the “Superman” memory crystal as a nod to the “memory crystals” featured in Superman films. The method records data via self-assembled nanostructures created in fused quartz. The five dimensions include size and orientation in addition to the 3-D coordinates of these nanostructures. The storage allows unprecedented parameters, including 360-TB/disc data capacity, thermal stability up to 1000 °C, and an unlimited lifetime.


Scientists at the University of Southampton have experimentally demonstrated the recording and retrieval processes of five-dimensional digital data by femtosecond laser writing. The storage allows unprecedented parameters, including 360-TB/disc data capacity, thermal stability up to 1000 ºC, and practically unlimited lifetime. Pictured here, digital data recorded into 5-D optical data storage. Images courtesy of the University of Southampton.

“We are developing a very stable and safe form of portable memory using glass, which could be highly useful for organizations with big archives. At the moment companies have to back up their archives every five to 10 years because hard-drive memory has a relatively short life span,” said lead researcher Jingyu Zhang of the University of Southampton’s Optoelectronics Research Centre (ORC). “Museums who want to preserve information or places like the national archives where they have huge numbers of documents, would really benefit.”

The self-assembled nanostructures change the way light travels through glass and modify its polarization, which can be read using the combination of an optical microscope and a polarizer similar to that found in sunglasses.


Jingyu Zhang

The investigators successfully recorded a 300-kb digital copy of a text file in 5-D using an ultrafast laser. The file was written in three layers of nanostructured dots separated by 5 µm.

“It is thrilling to think that we have created the first document which will likely survive the human race,” said ORC group supervisor professor Peter Kazansky. “This technology can secure the last evidence of civilization: all we've learnt will not be forgotten.”

The researchers are now searching for industry partners to commercialize the technology.

The work, conducted under the European Union framework project Femtoprint, was presented in June at CLEO 2013 in San Jose.

For more information, visit: www.southampton.ac.uk

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media