Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Four-wave mixing generates superluminal pulses

Ashley N. Paddock, ashley.paddock@photonics.com

A novel four-wave mixing technique that restructures parts of light pulses to travel faster than the speed of light could improve the timing of communications signals and help examine the propagation of quantum correlations.

Einstein’s theory of relativity states that light passing within a vacuum represents the universal speed of light. A short burst of light emerges as a type of symmetric curve. The curve’s leading edge cannot surpass the speed of light, but the peak of the pulse can be altered forward and backward.

Recent experiments demonstrated that, by increasing the leading edge of the pulse and cutting the back end, “uninformed” faster-than-light pulses with increased noise are generated. However, four-wave mixing produces less noisy, cleaner and more rapid pulses by rearranging or rephasing the pulse-generating lightwaves.


In four-wave mixing, researchers send “seed” pulses of laser light into a heated cell containing atomic rubidium vapor along with a separate “pump” beam at a different frequency. The vapor amplifies the seed pulse and shifts its peak forward, making it superluminal. At the same time, photons from the inserted beams interact with the vapor to generate a second pulse, called the “conjugate.” Its peak, too, can travel faster or slower, depending on how the laser is tuned and on the conditions inside the gain medium. The chamber contains rubidium-85 gas at ~116 °C. Courtesy of NIST.


In the four-wave mixing technique developed by scientists at the National Institute of Standards and Technology, laser light “seed” pulses up to 200 ns long are introduced into a heated cell containing atomic rubidium vapor and a separate “pump” beam at a different frequency from the seed pulses. The seed pulse is amplified by the vapor, shifting its peak forward so that it becomes superluminal. The photons from the inserted beam interact with the vapor to generate a second pulse, called the “conjugate” because of its mathematical relationship to the seed. The speed of the peak is based on the conditions inside the laser and on how it is tuned.

The experiment yielded pulse peaks that arrived 50 ns faster than light traveling through a vacuum.

The team now is looking to use the method to study quantum discord, which mathematically defines the quantum information between two correlated systems such as the conjugate and seed pulses. The researchers hope to determine how useful this light could be to transmit and process quantum information.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2025 Photonics Media