Interferometry Advances Black Hole Observations
A new technique that combines the light of three powerful infrared telescopes allows astronomers to see objects in that wavelength 130 million light-years away without having to build singularly massive and expensive telescopes specifically designed for that purpose.
An international collaboration, including researchers from the University of California, Santa Barbara, and the Max Planck Institute for Radio Astronomy in Bonn, Germany, used the AMBER interferometry instrument to combine the light from three 8-m telescopes at the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory in Chile.
This is an artist's view of a dust torus surrounding the accretion
disk and the central black hole in active galactic nuclei. [Image: NASA/EPO
— Sonoma State University, Aurore Simonnet (http://epo.sonoma.edu/)]
The initial observations using the Keck Telescope in Hawaii, which is capable of resolving in the infrared objects the size of a football field from a distance of more than 200,000 miles away, were not powerful enough to resolve the accretion ring surrounding the black hole in the center of galaxy NGC 3783.
According to Sebastian Hoenig, a postdoctoral researcher at the UC Santa Barbara, they would need a telescope that was 10 times more powerful than Keck. To achieve that angular resolution, such a telescope would require a diameter of 130 m. The largest telescopes being built right now are only 30-40 m.
However, using the interferometry instrument, the researchers achieved the angular resolution needed to see the hot ring of dust, called an active galactic nucleus. To achieve such a resolution, the telescopes had to be constantly corrected, to an accuracy of a few micrometers, for the difference in the arrival of light among the three apertures.
The Very Large Telescope (VLT) at the European Southern
Observatories' Cerro Paranal observing site. Located in the Atacama Desert of
Chile, the site is more than 2600 m above sea level, providing incredibly dry,
dark viewing conditions. The VLT is the world’s most advanced optical
instrument, consisting of four unit telescopes with main mirrors 8.2 m in
diameter and four movable 1.8-m-diameter auxiliary telescopes. The telescopes
can work together in groups of two or three to form a giant interferometer,
allowing astronomers to see details up to 25 times finer than with the
individual telescopes. (Image: Iztok Boncina/ESO)
The overarching goal of the researchers is to learn how the supermassive black holes that lie in the center of galaxies are fueled.
"The [European Southern Observatories'] VLTI provides us with a unique opportunity to improve our understanding of active galactic nuclei," said lead researcher Gerd Weigelt. "It allows us to study fascinating physical processes with unprecedented resolution over a wide range of infrared wavelengths. This is needed to derive physical properties of these sources."
Up next for the research team, which also includes astrophysicists from the universities of Florence, Grenoble and Nice, will be the continued accumulation of information from additional observations toward a highly detailed image of the active nucleus at galaxy NGC 3783.
For more information, visit:
www.ucsb.edu
LATEST NEWS
- Photronics Makes Board Appointment: People in the News: 12/26/24
Dec 26, 2024
- Tiny Fiber Photoacoustic Spectrometer Enables Fast, Minimally Invasive Analysis
Dec 26, 2024
- Low-Cost 3D-Printed Device Generates Vortex Beams
Dec 24, 2024
- Hybrid Material Achieves Fast, Stable Phosphorescent Emission for OLEDs
Dec 24, 2024
- Quantum Teleportation Demonstrated Over Busy Internet Cables
Dec 23, 2024
- Teledyne Space Imaging Selected to Build Payload for LISA Space
Dec 23, 2024
- LLNL and Starris: Optimax Space Systems Partner on Monolithic Telescope Tech
Dec 20, 2024
- Civan Lasers Launches U.S. Demonstration Labs: Week in Brief: 12/20/24
Dec 20, 2024