Artificial Leaf Could Bring Electricity to Developing World
The first practical artificial leaf, composed of silicon, nickel and cobalt, can convert sunlight into chemical fuel, a milestone in the drive for sustainable energy that mimics the process of photosynthesis.
Unlike earlier devices, which used costly ingredients, the MIT-developed artificial leaf is made from inexpensive materials and employs low-cost engineering and manufacturing processes.
It has a sunlight collector sandwiched between two films that generate oxygen and hydrogen gas. When dropped into a jar of water in the sunlight, it bubbles away, releasing hydrogen that can be used in fuel cells to make electricity.
An artificial leaf. (Image:
American Chemical Society)
The self-contained units are an attractive solution for making fuel for electricity in remote places and the developing world, but current designs have relied on rare-earth metals, such as platinum, and on costly manufacturing processes.
To make these devices more widely available, Daniel G. Nocera of MIT replaced the hydrogen gas-producing platinum catalyst with a less-expensive nickel-molybdenum-zinc compound. A cobalt film that generates oxygen gas was placed on the other side of the leaf.
“Considering that it is the 6 billion nonlegacy users that are driving the enormous increase in energy demand by midcentury, a research target of delivering solar energy to the poor with discoveries such as the artificial leaf provides global society its most direct path to a sustainable energy future,” Nocera said.
The research, which received support from the National Science Foundation and the Chesonis Family Foundation, appears in the American Chemical Society journal
Accounts of Chemical Research.
For more information, visit:
www.mit.edu
LATEST NEWS
- Photronics Makes Board Appointment: People in the News: 12/26/24
Dec 26, 2024
- Tiny Fiber Photoacoustic Spectrometer Enables Fast, Minimally Invasive Analysis
Dec 26, 2024
- Low-Cost 3D-Printed Device Generates Vortex Beams
Dec 24, 2024
- Hybrid Material Achieves Fast, Stable Phosphorescent Emission for OLEDs
Dec 24, 2024
- Quantum Teleportation Demonstrated Over Busy Internet Cables
Dec 23, 2024
- Teledyne Space Imaging Selected to Build Payload for LISA Space
Dec 23, 2024
- LLNL and Starris: Optimax Space Systems Partner on Monolithic Telescope Tech
Dec 20, 2024
- Civan Lasers Launches U.S. Demonstration Labs: Week in Brief: 12/20/24
Dec 20, 2024