Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Interplanetary Dust Is Deep Space Matter

The infrared spectra of interplanetary dust collected in the stratosphere indicate that the particles are similar to the stuff of comets and protostellar clouds, according to an international research team that published its findings in the Sept. 10 issue of Science. The results of the study suggest that interplanetary dust is the purest and most primitive astrophysical material available for understanding the evolution of the solar system.

The researchers analyzed thin sections of the 15-µm-diameter particles with a 10-µm infrared beam from the National Synchrotron Light Source at Brookhaven National Laboratory in Upton, N.Y. The spectra of subpicogram glassy silicate crystals in the dust grains revealed two varieties: those that match the magnesium-rich comets and pre-main sequence stars, and those that match the amorphous silicates found in molecular clouds and young stellar objects.

The cometary dust is unique because chondritic meteorites and micrometeorites rarely display magnesium-silicate crystals. The particles that correspond to the spectra of prestellar molecular clouds, however, are far more significant; they are likely the remnants of the cloud from which our solar system emerged.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2025 Photonics Media