Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Quantum dot ink will make lasers printable

Dr. Jörg Schwartz, joerg.schwartz@photonics.com

Printing techniques that already have been incorporated into solar cell manufacturing could prove useful for the production of lasers and other emitting optoelectronic devices, according to researchers from Australia and Italy.

Quantum dots are semiconductors whose conduction characteristics are closely related to the size and shape of the individual crystal. This means that with decreasing crystal size, the bandgap gets larger. The bandgap determines the energy needed to excite the dot – or the energy that is released when the crystal returns to its resting state. In fluorescent dye applications, this equates to higher frequencies of light emitted after excitation of the dot as the crystal size grows smaller, resulting in a color shift from red to blue in the light emitted. The big advantage in using quantum dots as semiconductors is that, because of the high level of control over the size of the crystals produced, it is possible to have very precise control of conduction and emission properties.


Quantum dot inks make different colors, depending on the size of the crystals. Images courtesy of Raffaella Signorini, University of Padua.


This led the scientists to set out making cheaper, more versatile lasers. “Creating cheaper lasers relies heavily on progress in materials science,” said researcher Jacek Jasieniak of CSIRO, the Australian Commonwealth Scientific and Industrial Research Organization. “At present, lasers are manufactured using expensive materials and production techniques. To make them more cost-effective, we have focused on developing materials that are cheap, function well as lasers, and can be printed. Quantum dots meet all these requirements.”


Conventional lasers cannot be used for printable nanolasers because they require large optical cavities, so the researchers used a patterned surface for the printing (a). Repetitive grooves on the surface act as little resonators (b).


However, to make a laser, both an active medium and a cavity are required. Making lasers that can be spread over wide areas takes many small cavities. “Conventional lasers use large optical cavities which make them impossible to use for printable … nanometer-size lasers,” Jasieniak said. Therefore, a patterned surface is used for the printing, and the repetitive grooves in this surface, reflecting the light at the interfaces, become little resonators. A major benefit of these nano-structured optical cavities is that they can be produced during the printing process by controlled indentation or scratching of the material’s surface.


A prototype quantum lasing device.


Jasieniak’s work, performed jointly with his colleagues at CSIRO and the University of Melbourne in Australia and at the University of Padua in Italy, was recently presented for the first time in public through Fresh Science, a communication boot camp for early-career scientists held in Melbourne.

The potential of printable optoelectronic devices could be tremendous, reaching from flat emissive lighting panels to new types of televisions and displays, and to a wide range of fields in computers, electronics and sensors. For this vision to be realized, however, a little more work is needed. Currently, the printable lasers are optically pumped, and the big goal is to make them electrically driven instead.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media