Discoveries made in how the brain senses scent
Studies have revealed
that mono-molecular odors activate distinct patterns of glomeruli — bundles
of olfactory receptor axons on the main olfactory bulb of the brain — and
that the reaction of two odors combined is equal to the sum of the individual components’
reactions.
Until recently, however, scientists had yet to
learn whether those discoveries would be true for complex natural stimuli as well.
In a study reported June 15 in
Neuron,
scientists from Duke University Medical Center in Durham, N.C., compared the glomerular
responses of natural odors with their fractionated components. Their results provide
insight into the process by which the brain distinguishes scents.
Initially, they identified and separated
volatile components in each odor with gas chromatography. They used the scents from
food, nesting materials, rodent attractants and repellants, and urine from predatory
animals. They exposed mice to the original odor and its individual components and
measured the neural responses to each. They used an intrinsic signal imaging system
from Optical Imaging Inc. and mapped brain activity by detecting changes in reflected
light with a Sony CCD camera.
The scientists found that spatial maps
of activated glomeruli act as identifiers for components, and that each component
activates a fraction of the glomeruli that contribute to the whole natural scent’s
representation.
To distinguish a scent, the brain compiles
the signals of all of the odors’ individual chemical components. The researchers
expect that the olfactory bulb transmits the information perceived from individual
components to another part of the brain, where it is assembled and the scent identified.
Because humans and mice rely on the
same smell-decoding system and have similar brain structures for scent, the scientists
believe that the human scent identification process is similar.
LATEST NEWS
- THz Light Induces Magnetism in Antiferromagnet for Data Storage
Dec 27, 2024
- Researchers Find Novel Collective Behaviors in Quantum Optics
Dec 27, 2024
- Photronics Makes Board Appointment: People in the News: 12/26/24
Dec 26, 2024
- Tiny Fiber Photoacoustic Spectrometer Enables Fast, Minimally Invasive Analysis
Dec 26, 2024
- Low-Cost 3D-Printed Device Generates Vortex Beams
Dec 24, 2024
- Hybrid Material Achieves Fast, Stable Phosphorescent Emission for OLEDs
Dec 24, 2024
- Quantum Teleportation Demonstrated Over Busy Internet Cables
Dec 23, 2024
- Teledyne Space Imaging Selected to Build Payload for LISA Space
Dec 23, 2024