Trapped in the clouds
Specifically, DIBs can occur when sheet-like hydrogen clouds lie within 30 light-years of very bright stars along a line of sight to Earth. While most light passes through the clouds, some vacuum ultraviolet light (VUV) near absorption wavelengths that correspond to molecular-hydrogen excited-state transitions are trapped in the cloud by Rayleigh scattering. The intensified nearly resonant VUV light combines with certain visible starlight wavelengths and excites the hydrogen molecules in simultaneous two-photon events.
In their detective work, the scientists began analyzing studies of light-absorbing properties of excited states of hydrogen. Eventually they found that in at least 70 instances, the color of the visible light needed to reach a quantum-mechanically permitted excited state of hydrogen matched one of the 130 known DIBs, including two of the strongest.
The researchers noted that for the DIB at 5797 Å the absorption is far greater than the VUV part of the assigned two-photon transition would indicate. "If our basic model is correct, there has to be some supercharging mechanism that would greatly enhance the VUV associated with the 5797-Å DIB," Sorokin said.
In the scientists' view, two other nonlinear processes, stimulated Raman scattering and four-wave parametric oscillation (FWPO) appear to provide such a mechanism.
In addition, FWPO offers an explanation for the unusual emission seen in the Red Rectangle, a star-driven emission nebula in the Milky Way consisting of two conical gas shells pointing in opposite directions. From Earth, it appears X-shaped, but in early overexposed photographs it appeared rectangular, hence the name. The rectangle is the only such system where DIBs are seen in emission, rather than absorption.