Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


PV Energy Paths Controlled

University of Florida chemists have pioneered a method to tease out promising molecular structures for capturing energy, a step that could speed the development of more efficient, cheaper solar cells.

“This gives us a new way of studying light-matter interactions,” said Valeria Kleiman, a UF associate professor of chemistry. “It enables us to study not just how the molecule reacts, but actually to change how it reacts, so we can test different energy transfer pathways and find the most efficient one.”

Kleiman’s work focuses on molecules known as dendrimers whose many branching units make them good energy absorbers. The amount of energy the synthetic molecules can amass and transfer depends on which path the energy takes as it moves through the molecule. Kleiman and three co-authors the study set to appear in the journal Science, are the first to gain control of this process in real time. The team demonstrated that it could use phased tailored laser pulses — light whose constituent colors travel at different speeds — to prompt the energy to travel down different paths.

“What we see is that we control where the energy goes by encoding different information in the excitation pulses,” Kleiman said.

Researchers who now test every new molecular structure for its energy storage and transfer efficiency may be able to use what Kleiman called a new spectroscopic tool to quickly identify the most promising structures for photovoltaic devices.

“Imagine you want to go from here to Miami, and the road is blocked somewhere,” she said. “With this process, we’re able to say, ‘Don’t take that road, follow another one instead.’”

The other authors of the paper are Daniel Kuroda, C.P. Singh and Zhonghua Peng. The research was supported by the University of Florida and the National Science Foundation.

For more information, visit: www.ufl.edu

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2025 Photonics Media