Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Silicon Camera Mimics Eye

The human eye's ability to use a curved surface to capture images has stumped research groups trying to reproduce it for the last 20 years. But now engineers report they have solved the problem by using stretchable optoelectronics to create a working eye-like camera.

Close-up view of the completed electronic eye camera, which integrates a transparent hemispherical cap with a simple, single-component imaging lens. (Images courtesy John Rogers, University of Illinois at Urbana-Champaign)
The new camera's design uses an array of single-crystalline silicon detectors and electronics configured in a stretchable, interconnected mesh instead of the flat microchips used as light sensors in digital cameras. It is based on the design of the human eye, which has a simple, single-element lens and a hemispherical detector, said the researchers at the University of Illinois and Northwestern University.

The camera integrates such a detector with a hemispherical cap and imaging lens, to yield a system with the overall size, shape and layout of an eye. Because it's stretchable, the new imaging device can be conformed to a curved surface and is being touted as the next step toward creating artificial retinas for "bionic" eyes.

"Conformally wrapping surfaces with stretchable sheets of optoelectronics provides a practical route for integrating well-developed planar device technologies onto complex curvilinear objects," said John Rogers, the Flory-Founder Chair Professor of Materials Science and Engineering at Illinois. "This approach allows us to put electronics in places where we couldn't before. We can now, for the first time, move device design beyond the flatland constraints of conventional wafer-based systems."

"The advantages of curved detector surface imaging have been understood by optics designers for a long time, and by biologists for an even longer time," said Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern's McCormick School of Engineering and Applied Science, who collaborated with Rogers. "That's how the human eye works -- using the curved surface at the back of the eye to capture an image."

Schematic illustration of steps for using compressible silicon focal plane arrays and hemispherical, elastomeric transfer elements to fabricate electronic eye cameras.
On a normal camera, such electronics must lie on a straight surface, and the camera's complex system of lenses must reflect an image several times before it can reflect on the right spots on the focal plane.

But exactly how to place those electronics on a curved surface to yield working cameras has stumped scientists, despite many different attempts over the last 20 years. The electronics lie on silicon wafers, which can only be compressed 1 percent before they break and fail.

Rogers and Huang got around this by creating an array of photodetectors and circuit elements that are so small -- approximately 100-µm square -- they aren't as affected when the elastomer pops back into its hemispheric shape. Think of them like buildings on the Earth -- though flat-bottomed buildings are built on the curved Earth, the area they take up is so small that the curve isn't felt. 

They also designed the array so that the silicon component of each device is sandwiched in the middle of two other layers, the so-called natural mechanical plane. That way, while the top layer is stretched and the bottom layer is compressed, the middle layer experiences very small stress.

When tested, more than 99 percent of the devices still worked after snapping the elastomer back to its hemispherical shape. Researchers found that the silicon in the devices was only compressed .002 percent -- far below the 1 percent compression where silicon fails.

The array package is then transfer printed to a matching hemispherical glass substrate. Attaching a lens and connecting the camera to external electronics completes the assembly. The camera has the size and shape of a human eye.

The electronic eye camera mounted on a circuit board.
Early images obtained using this curved array in an electronic eye-type camera indicate large-scale pictures that are much clearer than those obtained with similar, but planar, cameras, when simple imaging optics are used.

"In a conventional, planar camera, parts of the images that fall at the edges of the fields of view are typically not imaged well using simple optics," Huang said. "The hemisphere layout of the electronic eye eliminates this and other limitations, thereby providing improved imaging characteristics."

Huang and Rogers will continue to optimize the camera by adding more pixels.

"There is a lot of room for improvement, but early tests show how well this works. We believe that this is scalable, in a straightforward way, to more sophisticated imaging electronics," Huang said. "It has been a very good collaboration between the two groups."

Researchers are testing the same design principles in a range of other applications, including as a thin, conformable monitor to detect electrical signals traveling across the undulating surface of the human brain.

The research is the cover story of the Aug. 7 issue of Nature; Rogers is corresponding author.

For more information, visit: www.uiuc.edu or www.northwestern.edu

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media