Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


NEMS/MEMS Research Center Gets $2M in Funding

A new, three-year, multi-institution nano- and microelectromechanical systems (NEMS/MEMS) research initiative affiliated with Harvard University’s engineering and applied sciences programs has received over $2 million in funds from DARPA and industry partners.

The Harvard Center for Microfluidic and Plasmonic Systems will carry out fundamental research into surface plasmon (SP) nanostructure design, fabrication, imaging and integration with microfluidic systems. The center will also bring together experts from a variety of areas, including microfluidics and nanofabrication, biosensors, plasmon devices, optoelectronics, bottom-up nanofabrication and plasmonic fluorescent sensors. The center will be led by Ken Crozier, assistant professor of electrical engineering.

“Surface plasmons, or SPs, are collective oscillations in the free electron gas that can be excited at the surfaces of materials such as metals. Recent dramatic advances in SP technologies present new opportunities in NEMS/MEMS devices such as microfluidic systems, which involve the manipulation of tiny volumes of liquid,” Crozier said.

Metal nanostructures supporting SPs enable electromagnetic energy to be concentrated into deep subwavelength regions. This presents an opportunity for improving the detection sensitivity of biological molecules, such as tagged DNA strands, at very low concentrations. Crozier and his colleagues will investigate a new class of microsystems in which metal nanostructures are combined with microfluidic systems for sample delivery.

The center will focus on two demonstration vehicles for SP technology. In the first, SP nanostructures are positioned inside microfluidic channels for fluorescent detection of single molecules of DNA. This could potentially enable biotoxins to be detected at very low concentrations. In the second, the interaction of single poliovirus particles with a cell membrane will be observed by monitoring the changes in transmission of a nanohole array sensor. This could be a useful tool in the development of antiviral drug compounds.

Center participants will undertake a variety of projects related to surface plasmons. These include optical microscopes with improved spatial resolution, numerical modeling of SPs, low-cost nanofabrication methods, understanding the interaction between dye molecules and metals, and optical fiber probes incorporating metallic nanostructures.

Participating academic/research institutions include the Harvard Medical School, the University of Massachusetts at Amherst and the Charles Stark Draper Laboratory. Industrial partners include US Genomics, RSoft Design Group, LumArray and Luminus Devices.

For more information, visit: www.deas.harvard.edu

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media