Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Gaussian and Newtonian Thin Lens Formulas

Equation (1) is known as the Gaussian form of the lens equation, after the mathematician Karl F. Gauss. Equation (2), first derived by Sir Isaac Newton, is the Newtonian form of a lens equation. The Gaussian form is probably more familiar, but the Newtonian equation is algebraically simpler. Notice that in the former equation object and image distances s and s’ are measured from the center of a thin lens, while in the latter, object and image distances x and x’ are measured from the focal points F and F’.

The lateral magnification m can be expressed either in terms of s and s’, by equation (3), or in terms of x, x’ and f, by equation (4).



Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media