“I think this technology will eventually replace the current AFM,” said Levent Degertekin, head of the project and an asscoiate professor in the Woodruff School of Mechanical Engineering at Georgia Tech. “We’ve multiplied each of the old capabilities by at least 10, and it has lots of new applications.”
FIRAT solves two of AFM’s chief disadvantages as a tool for examining nanostructures -- AFM doesn’t record movies and it can’t reveal information on the physical characteristics of a surface, said Calvin Quate, one of the inventors of AFM and a professor at Stanford University. “It is possible that this device provides us with the ‘ubiquitous’ tool for examining nanostructures,” Quate stated.
FIRAT works a bit like a cross between a pogo stick and a microphone. In one version of the probe, the membrane with a sharp tip moves toward the sample and just before it touches, it is pulled by attractive forces. Much like a microphone diaphragm picks up sound vibrations, the FIRAT membrane starts taking sensory readings well before it touches the sample.
And when the tip hits the surface, the elasticity and stiffness of the surface determines how hard the material pushes back against the tip. So rather than just capturing a topography scan of the sample, FIRAT can pick up a wide variety of other material properties. “From just one scan, we can get topography, adhesion, stiffness, elasticity, viscosity -- pretty much everything,” Degertekin said.
For a regular AFM to detect the features of the object, the actuator must be large enough to move the cantilever up and down. The inertia of this large actuator limits the scanning speed of the current AFM. But FIRAT solves this problem by combining the actuator and the probe in a structure smaller than the size of a head of a pin. With this improvement, FIRAT can move over sample topography in a fraction of the time it takes AFM to scan the same area.
The researchers say that FIRAT’s new speed and added features may open up many new applications for AFM. For instance, FIRAT is capable of scanning integrated circuits for mechanical and material defects. And in biomolecular measurement applications, FIRAT can scan the surface quickly enough for a researcher to observe molecular interactions in real time.
“The potential is huge. AFM started as a topography tool and has exploded to many more uses since. I’m sure people will find all sorts of uses for FIRAT that I haven’t imagined,” Degertekin said. FIRAT will be available for certain applications immediately, while others may take a few years, he said.
The research, funded by the National Science Foundation and the National Institutes of Health, appeared in the February issue of Review of Scientific Instruments. For more information, visit: www.gatech.edu