DARPA Renews Symmetricom Atomic Clock Program Funds
SAN JOSE, Calif., Aug. 23 -- Symmetricom Inc., a maker of timing, frequency and synchronization products such as atomic clocks and network time servers, announced today it was awarded phase three funding for the Defense Advanced Research Projects Agency (DARPA) Chip Scale Atomic Clock (CSAC) program, for the production of miniature, low-lower atomic clocks for precision timing applications in handheld battery-powered instrumentation for use by military personnel.
Under the award, valued at $3.4 million, Symmetricom will develop miniature low-power atomic clocks based on its coherent population trapping (CPT) atomic interrogation technology and microelectromechanical systems (MEMS) fabrication techniques.
Symmetricom is working with the Charles Stark Draper Laboratory in Cambridge, Mass., and Sandia National Laboratories in Albuquerque, N.M., on CSAC development.
Atomic clocks are more accurate, stable and precise than quartz-based technologies, but they are larger and consume more power -- by a hundred-fold -- than quartz-based clocks. Existing miniature atomic clocks occupy a volume similar to a deck of playing cards and consume power comparable to a notebook computer. In phase two of the DARPA CSAC program, Symmetricom demonstrated a miniature atomic clock that was ten times smaller and lower in power than existing technology. In phase three, Symmetricom said, it will reduce the size and power an additional tenfold -- comparable to low-power quartz clocks -- while improving accuracy and stability by a factor of 10 to 100.
Symmetricom said the use of miniature, low-power precision timing references such as CSAC will enable a new generation of portable instrumentation for positioning, navigation and communications, and that ultrastable frequency references will dramatically improve the bandwidth and reliability of secure military communications. In military global position system receivers, stable time sources will enable robust acquisition and position determination in a jammed environment, the company said.
For more information, visit: www.atomic-clock.symmttm.com
LATEST NEWS
- Fraunhofer CAP Appoints Head, Scientific Director: People in the News: 1/15/25
Jan 15, 2025
- Bioluminescent Tags Track RNA Dynamics in Live Cells in Real Time
Jan 15, 2025
- Sensing and Inspection Specialist EVK Joins Headwall Group
Jan 14, 2025
- PHOTON IP Raises $4.9M Seed Round
Jan 14, 2025
- Graphene Prevents Damage to Flexible Thin Films for Wearable Electronics
Jan 14, 2025
- Thorlabs Acquires VCSEL Developer, Longtime Partner Praevium Research
Jan 13, 2025
- Electrically-Pumped GaAs-Based Nano-Ridge Lasers Fabricated at Wafer Scale
Jan 13, 2025
- Photoactivated Gel Achieves Bone Regeneration and Adhesion at Same Time
Jan 13, 2025