Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Polymer Microlenses Added to Micropixelated UV LED

Daniel S. Burgess

Proposed applications of LEDs having micron-scale pixel elements include microdisplays and biological and chemical sensors. Now scientists at the University of Strathclyde in Glasgow, UK, have integrated a microlens array and a matrix-addressable, 368-nm micropixelated LED to demonstrate the suitability of such devices for maskless photolithography, in which the programmable emission pattern of the exposure system would produce the desired pattern on a photoresist.

In previous experiments with a bare-chip AlInGaN LED with a 64 × 64-pixel structure, the scientists found that the beam divergence from each microemitter was too high to offer the desired resolution for photolithographic exposure. They thus quantified this divergence and designed a microlens array that would collimate the output.

Using spin-coating, photolithographic patterning and reactive-ion etching, they fabricated an array of 23-μm-diameter, 8.4-μm-high spherical lenses of UV-curable adhesive over the micropixels, which were spaced by 30 μm. The resulting beams were 8 μm in diameter and remained well collimated over a distance of 500 μm.

A test of the micropixelated LED for maskless photolithography demonstrated that it could produce features 7 μm in diameter in a photoresist, opening the way to a variety of direct-writing applications and to the self-aligned fabrication of micro-optical elements.

The work is part of a larger project funded by the Basic Technology Research Programme of Research Councils UK to explore micropixelated LEDs for microscopy, biosensing, direct writing and hybrid organic/inorganic optoelectronics.

Applied Physics Letters, May 30, 2005, 221105.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media