Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Satellite Sees Mysterious Earth Energy

WASHINGTON, Feb. 24 -- Scientists using observations from NASA's Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) satellite detected flashes of gamma ray energy in Earth's upper atmosphere in greater detail than ever before.

RHESSI is part of NASA's Sun-Earth Connection program. It was designed to study x-rays and gamma rays from solar flares. However, RHESSI's detectors pick up gamma rays from a variety of sources.

A team of researchers from the University of California, Santa Cruz, University of California, Berkeley, and the University of British Columbia, Vancouver, have reported new findings about these bursts of energy, called terrestrial gamma ray flashes (TGFs).

TGFs are very short blasts of gamma rays, lasting about one millisecond, emitted into space from Earth's upper atmosphere. They are thought to be emitted by electrons traveling at 99.99 percent of the speed of light (186,000 m/s), when they scatter off of atoms and decelerate in the upper atmosphere.

The Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory first discovered TGFs in 1994. However, BATSE's ability to count the TGFs or measure their peak energies was limited. Observations from RHESSI raised the maximum recorded energy of TGFs by a factor of 10, and indicate Earth gives off approximately 50 TGFs or more daily.

"This is a very interesting process involving extreme physics right here on Earth," said David Smith, an assistant professor of physics at UCSC and first author of the paper. "The energies we see are as high as those of gamma rays emitted from black holes and neutron stars. If we can understand the process here, it might give us insights into similar processes in less accessible parts of the universe."

While it remains unknown exactly how electron beams accelerate fast enough to produce TGFs, Smith said it may involve the build-up of electric charge at the tops of thunder clouds due to lightning discharges. This results in a powerful electric field between the cloud tops and the ionosphere, the outer layer of Earth's atmosphere.

TGFs have been correlated with lightning strikes and may be related to visible phenomena that occur in the upper atmosphere over thunderstorms. RHESSI investigators plan to collaborate with other researchers to investigate how various phenomena are related, Smith said.

For more information, visit: www.nasa.gov/vision/universe/solarsystem/rhessi_tgf.html


Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2025 Photonics Media