Large, even surfaces
In 1994, the group polished 80-mm2 laser-grade fused silica, using a high-power CO2 laser. A conventional oven first heated the glass to 580 °C to reduce the chance of cracks created by the fast heating from the laser. (The viscosity of glass drops severely at 650 °C.) A multifaceted vibrating mirror distributed the 10.6-µm light evenly across the surface, exposing the glass for 0.4 to 9 s.
To smooth the glass without destroying its curvature, the system has to heat the surface to a depth greater than the peak-to-trough distance (500 nm) without raising the temperature of the remaining material above 650 °C. Infrared radiation can achieve this because it is readily absorbed by glass at 10.6 µm.
After the surface absorbed the laser beam and turned liquid, the researchers realized a reduction in the glass's rms surface deviation from 500 to 1 nm.
"It could be of interest because it could substantially reduce the polishing time," said Gary Perrone, production manager for the optical house Janos Technology Inc. of Townshend, Vt.
It takes a lens about 8 h to go through the polishing process, he said.
Recently, the Spanish group improved the system to cover 5000- mm2 glass surfaces. Using a similar laser with a maximum power of 2 kW, a dual-faceted lens, half of which is attached to a piezoelectric actuator, folds the nearly Gaussian beam into a vertical line. Quickly vibrating the mirror averages the interference fringes, and cylindrical ZnSe optics allow the system to switch beam widths from 2 to 18 mm.
Interferometric measurements showed that the process resulted in a significant drop in surface roughness but had little effect on the wavy formations with gradual slopes from the grinding process.