Photonics on silicon has been suggested since the 1970s, and previous light-beam switching devices on silicon have been demonstrated, but they were excessively large, by microchip standards, or required a very high-powered beam. The approach developed by Michal Lipson, Cornell assistant professor of electrical and computer engineering, confines the beam to be switched in a circular resonator, greatly reducing the space required and allowing a very small change in refractive index to shift the material from transparent to opaque.
"It is highly desirable to use silicon -- the dominant material in the microelectronic industry -- as the platform for these photonic chips," they said in their paper. The group already has developed other components for silicon photonic chips, including straight and curved waveguides. One of the key components needed, however, is a way for one optical signal to switch another on or off.
Lipson's optical switch is based on a ring resonator, a device already familiar to photonics researchers. For the reported experiments, the researchers created a ring 10 micrometers in diameter with a resonance wavelength of 1,555.5 nanometers, in the near infrared.
To turn the switch off, they pumped a second beam of light in the same wavelength range through the system. This light is absorbed by the silicon through a process known as two-photon absorption, creating many free electrons and "holes" (positively charged regions) in the material. This changes the refractive index and shifts the resonant frequency of the ring far enough that it will no longer resonate with the 1,555.5-nanometer signal. The process can theoretically take place in a few tens of picoseconds, the researchers said.
A similar effect can be used in a straight waveguide, but it requires a fairly long distance. Because light travels many times around the ring, the scattering effect is enhanced and the signal can be controlled in a very small space.
For routing applications, Lipson said, a ring resonator coupled to two waveguides could be used. The second waveguide would receive a signal only when the resonator is switched on. She said there is very little loss of light in the ring, meaning that light coming into a routing device could be "recycled" and sent on its way with no additional amplification. Ring resonators also could be used as tunable filters, the researchers suggest, for example to separate the many wavelengths of light in multiplexed optical fiber communications systems.
Ring resonators also could be used as tunable filters, the researchers suggest, for example to separate the many wavelengths of light in multiplexed optical fiber communications systems.
The Nature paper is titled "All-optical switch on silicon: Controlling light with light on chip." Co-authors are Vilson Almeida, a former Cornell graduate student now in the Institute for Advanced Studies in the Technical Center of the Brazilian Air Force; Carlos Barrios, former Cornell postdoctoral researcher and now a scientist in the Nanophotonics Technology Centre, Universidad Politenica de Valencia, Spain; and Roberto Panepucci, former Cornell research associate, now an assistant professor at Florida International University.
For more information, visit: nanophotonics.ece.cornell.edu