Laser Stops Bose-Einstein Cold
Michael Van Belle
Physicists at Massachusetts Institute of Technology have broken new ground in Bose-Einstein condensate research by trapping the condensate with light and tuning its behavior with magnetic fields. Both accomplishments clear the way for new work in the manipulation of ultracold atoms.
The researchers' trap relied strictly on optical forces from a laser -- in effect an optical tweezer for condensates. "Through optical means, we can confine Bose-Einstein condensates and achieve extremely precise measurements and manipulation, which was never possible using magnetic fields to insulate the condensate from the room-temperature walls of the apparatus it was formed in," said Wolfgang Ketterle, leader of the MIT team.
This limitation removed, the MIT team has confined Bose-Einstein condensates using an IR laser beam that brings the condensate into focus. "The laser creates a dipole, which is trapped in the alternating electric field of the laser beam," Ketterle said.
Although the team thought the subsequent heating of the ultracold atoms would destroy the condensate, nothing happened. "What we essentially achieved is an optical tweezer for these condensates," Ketterle said. "This tweezer, or trap, can be steered with a laser beam that is comparable in power to a common laser pointer."
Although much has to be done before ultimate control of atoms is achieved, Ketterle sees the developments as a harbinger of things to come, particularly with the atom laser, which emits atoms rather than photons.
"It's one more parameter of control. Atoms are spreading out partially because of unavoidable fuel-point energy. The atom laser has a divergency, which is basically a knob that can be used to switch off the repulsion when atoms meet. In principle, we have shown that there might be a way through an atom laser beam to control an atom's behavior," Ketterle said.
LATEST NEWS
- Fraunhofer CAP Appoints Head, Scientific Director: People in the News: 1/15/25
Jan 15, 2025
- Bioluminescent Tags Track RNA Dynamics in Live Cells in Real Time
Jan 15, 2025
- Sensing and Inspection Specialist EVK Joins Headwall Group
Jan 14, 2025
- PHOTON IP Raises $4.9M Seed Round
Jan 14, 2025
- Graphene Prevents Damage to Flexible Thin Films for Wearable Electronics
Jan 14, 2025
- Thorlabs Acquires VCSEL Developer, Longtime Partner Praevium Research
Jan 13, 2025
- Electrically-Pumped GaAs-Based Nano-Ridge Lasers Fabricated at Wafer Scale
Jan 13, 2025
- Photoactivated Gel Achieves Bone Regeneration and Adhesion at Same Time
Jan 13, 2025