Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Lithographic Process Yields 3-D Photonic Crystal for Near-IR

Scientists at Massachusetts Institute of Technology in Cambridge have described a three-dimensional photonic crystal in silicon, with deliberately introduced point-defects, that displays resonant signatures around telecommunications wavelengths. They reported the development in the June 3 issue of Nature.

In the layer-by-layer fabrication technique, scanning-electron-beam lithography and spin-on dielectric planarization produce a hole and a rod layer in each process cycle. After four cycles, a hydrofluoric acid solution removes the spin-on dielectric, creating seven functional layers. The researchers suggest that the process lends itself to use with alternative material systems and to scaling for the production of large-area photonic crystals on the scale of centimeters.

Optical characterization of the photonic crystal revealed a large, 3-D bandgap from 1.15 to 1.45 µm, in good agreement with theoretical predictions. Photonic crystals with different-size holes displayed different bandgaps, confirming that the method may be used to fabricate crystals with the desired optical properties.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media