Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Proteins Used in Nanoscale Templates

Anne Fischer Lent

The future of electronic and photonic devices will be based on two-dimensional arrays of quantum dots, according to a team of researchers. The scientists, based at NASA Ames Research Center in Moffett Field, Calif., the SETI Institute in Mountain View, Calif., and Argonne National Laboratory in Illinois, have demonstrated the use of synthetic or biological materials to fabricate nanoscale ordered arrays of metal and semiconductor quantum dots. Devices produced from quantum dots may form the foundation of smaller, more efficient electronic and photonic devices.

The researchers discovered that by genetically engineering a protein, it self-assembled into regular double-ring structures known as chaperonins. They now have demonstrated that these chaperonins can direct the organization of metal and semiconductor nanoparticle quantum dots into ordered arrays.

The next step in this hybrid bio/inorganic approach to nanoscale engineering is to wire the arrays into functional devices, such as quantum dot lasers. They also hope to tap into advances in microbial genetics to induce asymmetry within the arrays by engineering specificity for other inorganic materials into the protein sequence.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2025 Photonics Media