Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Near-Field Microscopy Maps Nanoscale Material Compositions

Far-field microscopy techniques typically cannot map different types of materials on multicomponent nanostructures because the associated wavelength limit causes blurring of the image.
Researchers at the Max Planck Institut für Biochemie in Martinsried, Germany, have developed a method to distinguish the three main constituents of nanosystems -- metals, semiconductors and dielectrics -- by combining tapping-mode atomic force microscopy with an optical scattering probe to simultaneously map the optical response and tomography of a system.

As reported in the Jan. 7 issue of Applied Physics Letters, the method suppresses background interference by demodulating the detector signal at a harmonic of the microscope's tapping frequency -- thus providing measurements of refractive indices, linked to the different types of materials, at topological resolutions down to 10 nm.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2025 Photonics Media