Search
Menu
PI Physik Instrumente - Revolution In Photonics Align LW LB 3/24

Touch Screens Repel Fluids, Cut Glare and Still Look Good

Facebook X LinkedIn Email
BARCELONA, Spain, July 17, 2014 — Touch screens with nanostructured surfaces that ward off glare, reflection and fluids could easily be mass-produced, according to researchers from the Institute of Photonic Sciences.

In one study, the researchers demonstrated a highly transparent glass display screen with static contact angles of more than 170° for water and 160° for oil using a two-tier structure of 100- to 200-nm nanopillars and 10- to 30-nm branches.

Previous studies were able to achieve omniphobicity at the expense of light transparency and through visibility, the researchers said. But their glass averaged 93.8 percent visible light transmission and low scattering values (about 1 percent haze). The surface also reduced reflection to <0.5 percent.

One tier of the nanosurface was created using lithography-free metal dewetting, followed by reactive ion etching. The second tier was deposited via NanoSpray combustion chemical vapor deposition.

According to the researchers, this kind of glass could be used in self-cleaning solar panels, windows that resist ice, low-drag surfaces and anti-smudge touch screens.

In another study, the researchers roughened a glass surface at the microscale to reduce glare and etched nanoscale teeth into the surface to make it antireflective. The microstructure protects the nanostructure during wiping and smudging, and the surface is also hydrophobic, the researchers said.

The work was published in Nano Letters (doi: 10.1021/nl501767j) and ACS Applied Materials & Interfaces (doi: 10.1021/am5013062). 

For more information, visit www.icfo.eu.
Rocky Mountain Instruments - Custom Assemblies MR

Published: July 2014
Glossary
glass
A noncrystalline, inorganic mixture of various metallic oxides fused by heating with glassifiers such as silica, or boric or phosphoric oxides. Common window or bottle glass is a mixture of soda, lime and sand, melted and cast, rolled or blown to shape. Most glasses are transparent in the visible spectrum and up to about 2.5 µm in the infrared, but some are opaque such as natural obsidian; these are, nevertheless, useful as mirror blanks. Traces of some elements such as cobalt, copper and...
hydrophobic
Hydrophobic is a term used to describe substances or materials that repel or do not readily interact with water. The word hydrophobic comes from the Greek words "hydro," meaning water, and "phobos," meaning fear. Hydrophobic substances typically have nonpolar molecules or regions in their structure, which means there is an even distribution of charge. Water is a polar molecule, with oxygen attracting electrons more strongly than hydrogen. Hydrophobic substances are often nonpolar or have...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
reflection
Return of radiation by a surface, without change in wavelength. The reflection may be specular, from a smooth surface; diffuse, from a rough surface or from within the specimen; or mixed, a combination of the two.
scattering
Change of the spatial distribution of a beam of radiation when it interacts with a surface or a heterogeneous medium, in which process there is no change of wavelength of the radiation.
transparency
An image affixed to a transparent photographic film or plate by photographic, printing or chemical methods. It may be viewed by transmitted light.
BarcelonaDisplaysEuropeglareglasshydrophobiciceInstitute of Photonic Scienceslight transmissionnanoNano Lettersnanosprayreactive ion etchingreflectionResearch & Technologyscatteringself-cleaningsolar panelsSpainsurfacestouch screenstransparencywindowsomniphobiclithography-free metal dewettingcombustion chemical vapor depositionACS Applied Materials & Interfaces

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.