

a powerful, white-light, solid-state illuminator

why buy a lamp when you can have a light engine?

LIGHT EXCHANGE

Follow Photonics Media on Facebook and Twitter

sponsor

biophotonics.com

Creating Order From Disorder

Light scattering makes clear imaging through an opaque material seem insurmountable, but researchers have discovered that the resulting speckle pattern actually contains the key to restoring the shape of the original object. The findings could have important applications in bioimaging. The speckle pattern "is not completely random but contains some subtle correlations. We realized that the knowledge that these correlations are present was enough to get some information on the object," Dr. Jacopo Bertolotti of the University of Twente's MESA+ Institute for Nanotechnology told BioPhotonics.

Read Article >>

Share

Share

SHIFT INTO USB 3.0

CAMERAS NOW

e2v 2MP 60fps

SPEED WITH uEye® CP

Buyers' Guide or Browse these

Gastroenterology Laser Systems

Optical Coherence Tomography

Tissue Welding Laser Systems

Photodynamic Therapy /

Oncology Laser Systems

product categories:

Mass Spectrometers Microscope Cameras

Imaging Systems

Polymer Lens Almost Identical to Human Eye Lens

foreign substances will not distort the experimental results.

Laser Device Images, Tracks Cells, Dye-free

A multilayered polymer gradient refractive index (GRIN) lens inspired by the human eye could one day provide a more natural alternative to implantable eye lenses and consumer vision products.

Without contrast dyes or fluorophores, a new device can image and track living cells' reactions to various stimuli and create 3-D images of biological tissue at the nanoscale in just minutes. The system combines holographic microscopy and computational image processing to obtain 3-D images of living cells from every angle at a resolution of less than 100 nm. Because the tissue can be imaged without using contrast dyes or fluorescents,

Read Article >>

Read Article >>

Prism Winner Nominated for Edison Award

company recently won a Prism Award for the device.

Verisante Technology Inc.'s Aura skin cancer detection device was named a 2013 Edison Awards finalist. The

Read Article >>

Join Us for a Free Webinar 2013 Webinar Series - Expert Briefings

Techniques in Biophotonic Imaging

Thursday, March 21, 2013 - 1 p.m. EDT/10 a.m. PDT/5 p.m. GMT/UTC

Photonics Media will host:

Dr. Kimani C. Toussaint Jr. Quantitative Imaging of Collagen Fibers Using Second-Harmonic Generation University of Illinois, Photonics Research of Bio/Nano Environments (PROBE) lab group

Dr. Melissa Skala Photothermal Optical Coherence Tomography of Nanoparticle Contrast Agents Vanderbilt University School of Engineering, Optical Imaging Laboratory

Dr. Ofer Levi Multimodal Optical Neural Imaging with VCSEL Light Sources University of Toronto, Institute of Biomaterials and Biomedical Engineering

Microstructures with Living Cells

The behavior of cells strongly depends on their environment, and now a laser system being developed in Austria could create microstructures for embedding living cells in suitable surroundings for research and manipulation. Read Article >> Share

3-D Stress Map Reveals Embryonic Heart Defects

Stresses induced in an embryonic heart by blood flow have been visualized for the first time in 3-D using an optical coherence tomography (OCT) method. The technique could provide new insight into how and why heart defects develop.

Read Article >>

Laser Technique Unravels Spider Silk's Mysteries

A noninvasive, noncontact laser light scattering technique may be the key to unraveling the secret behind spider silk's strength. Although spider silk is an exceptional biological polymer, it is more complex in structure than its kin, collagen (the stuff of skin and bones), scientists say.

Read Article >>

In this edition of the industry's premier weekly newscast: A flexible new image sensor is completely transparent, silicon nanocrystals make color LEDs, a holographic imager could have biomedical applications, and a new art installation puts a unique spin on an everyday object. Hosted by Photonics Media's Laura Marshall and Melinda Rose.

Products on PhotonicsBuyersGuide.com

1550-nm Single-Mode Laser

Frankfurt Laser Company

MicroSpec Microscope Interface Princeton Instruments

iBeam Smart WS Wavelength-Stabilized Diode Laser TOPTICA Photonics, Inc.

TECHSPEC Pre-Mounted Fluorescence Filter Edmund Optics, Inc.

Industry Events

PITTCON 2013 - March 17 - 21, 2013 · Philadelphia, PA

Visit us at Booth 2719

Pittcon is the world's largest annual conference and exposition for laboratory science. It features the latest technology and instrumentation from over 900 exhibitors and more than 2000 technical presentations that cover topics such as life sciences, drug discovery, nanotechnology, biomedical, environmental, homeland security, food science, forensics, agriculture and biomass.

MORE INFO >>

Unsubscribe: http://www.photonics.com/Newsletter/EmailUnsubscribe.aspx

Questions: pr@photonics.com

Subscribe | Manage Subscriptions | Privacy Policy | Terms and Conditions of Use

Telecom, Datacom, Computing and More!

MARCH 17-21 ANAHEIM CONVENTION CENTER

ANAHEIM, CA, USA

Photonics news from your industry and your part of the world.

LIGHT EXCHANGE

Follow Photonics Media on Facebook and Twitter

